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Abstract

A new phase space criterion, encoding the physically motivated behavior of
coincidence arrangements of local observables, is proposed in this work. This
condition entails, in particular, uniqueness and purity of the energetically
accessible vacuum states. It is shown that the qualitative part of this new
criterion is equivalent to a compactness condition proposed in the literature. Its
novel quantitative part is verified in massive free field theory.

PACS number: 11.10.Cd
Mathematics Subject Classification: 81T05, 46L40

1. Introduction

Physical properties of vacuum states have been a subject of study since the early days
of algebraic quantum field theory [1, 2]. In particular, the problem of convergence of
physical states to a vacuum state under large translations attracted much attention. It was
considered under the assumptions of complete (Wigner-) particle interpretation [3], sharp
mass hyperboloid [4] and asymptotic abelianess in time [5]. As none of these assumptions is
expected to hold in all physically relevant models, further investigation of the vacuum structure
is warranted. We revisited this subject in recent publications [6, 7]. There we proposed a
phase space condition N� which encodes the firm physical principle of additivity of energy over
isolated subsystems. It entails the uniqueness of the vacuum states which can be prepared with
a finite amount of energy. These vacuum states appear, in particular, as limits of physical states
under large timelike translations in Lorentz covariant theories; they can also be approximated
by states of increasingly sharp energy–momentum values, in accordance with the uncertainty
principle.

1 Present address: Zentrum Mathematik, Technische Universität München, D-85747 Garching, Germany.
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In the present paper we introduce a new phase space condition C�, stated below, which is
inspired by the fact that all elementary physical states are localized somewhere in space. We
show that this new criterion has all the physical consequences listed above and, in addition,
entails purity of the vacuum state. A large part of the paper is devoted to the proof that the
new criterion holds in a model of massive, non-interacting particles and therefore is consistent
with the basic postulates of quantum field theory [8] which we now briefly recall.

The theory is based on a local net O → A(O) of von Neumann algebras which are
attached to open, bounded regions of spacetime O ⊂ Rs+1 and act on a Hilbert space
H. The global algebra of this net, denoted by A, is irreducibly represented on this space.
Moreover, H carries a strongly continuous unitary representation of the Poincaré group
Rs+1 � L

↑
+ � (x,�) → U(x,�) which acts geometrically on the net

α(x,�)A(O) = U(x,�)A(O)U(x,�)−1 = A(�O + x). (1.1)

We adopt the usual notation for translated operators αxA = A(x) and functionals ϕx(A) =
ϕ(A(x)), where A ∈ A, ϕ ∈ A∗, and demand that the joint spectrum of the generators
H,P1, . . . , Ps of translations is contained in the closed forward lightcone V +. We denote by
PE the spectral projection of H (the Hamiltonian) on the subspace spanned by vectors of energy
lower than E. Finally, we identify the predual of B(H) with the space T of trace-class operators
on H and denote by TE = PET PE the space of normal functionals of energy bounded by E.
The states from A∗ which belong to the weak∗ closure of TE,1 for some E � 0 will be called
the energetically accessible states. (Here TE,1 denotes the unit ball in the Banach space TE .)

Important motivation for the present study comes from the refined spectral theory of
translation automorphisms [9]. The aim of this theory is to decompose the algebra of
observables A into subspaces which differ in their behavior under translation automorphisms
Rs+1 � x → αx . The first step is to identify the pure-point spectrum: suppose that A ∈ A is
an eigenvector of the translation automorphisms i.e.

αxA = eiqxA, x ∈ R
s+1 (1.2)

for some q ∈ Rs+1. Then A belongs to the center of A, since by locality

‖[A,B]‖ = lim
|	x|→∞

‖[α	xA,B]‖ = 0, B ∈ A. (1.3)

The irreducibility assumption ensures that the center of A consists only of multiples of unity.
Hence the pure-point subspace is given by App = {βI |β ∈ C}. Since we do not have a concept
of orthogonality in A, it is not obvious how to choose the complementing continuous subspace
Ac. Suppose, however, that there exists a distinguished projection Ppp from A onto App. Then
it is natural to set Ac = ker Ppp and there follows the decomposition

A = App ⊕ Ac. (1.4)

Motivated by the ergodic theorem from the setting of groups of unitaries acting on a Hilbert
space, we attempt to construct such a projection by averaging the automorphisms {αx}x∈Rs+1

over the group Rs+1. Thus we consider the approximants

Ppp,L(A) = 1

|KL|
∫

KL

ds+1xαx(A), A ∈ A, (1.5)

where KL := {(x0, 	x) ∈ Rs+1|x0 ∈ [−Lε,Lε], |	x| � L}, 0 < ε < 1 and the integrals, defined
in the weak sense for any finite L > 0, are elements of B(H). By locality, the weak∗ limit
points of the net {Ppp,L(A)}L>0 belong to the commutant of A. Hence, by the irreducibility
assumption, they are multiples of unity. With this information at hand one easily obtains
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Theorem 1.1. Let {ωL}L>0 be a net of states on A given by the formula

ωL(A) := ω(Ppp,L(A)), A ∈ A, (1.6)

for some state ω ∈ T . Let ω
γ

0 ∈ A∗, γ ∈ I, be the limit points of this net in the weak∗ topology
of A∗ and {ωLβ

|β ∈ Jγ } the corresponding approximating subnets. Then each such limit point
ω

γ

0 is a translationally invariant, energetically accessible state which is independent of the
state ω.

It is a simple consequence of the above theorem that for any γ ∈ I we obtain a projection P
γ
pp

on the pure-point subspace App which has the following form:

P γ
pp(A) := w∗− lim

β
Ppp,Lβ

(A) = ω
γ

0 (A)I, A ∈ A. (1.7)

On physical grounds we expect that the translationally invariant, energetically accessible
states ω

γ

0 are vacuum states which all coincide. In order to establish these facts, we amend the
general postulates stated above by some physically motivated phase space conditions: First,
we consider the maps �E : TE → A(O)∗ given by

�E(ϕ) = ϕ|A(O). (1.8)

It was argued by Fredenhagen and Hertel in some unpublished work, quoted in [10], that in
physically meaningful theories these maps should satisfy the following condition.

Condition C�. The maps �E are compact2 for any E � 0 and any double cone O.

It is a consequence of this criterion that any energetically accessible and translationally
invariant state is a vacuum state, as physically expected. (See e.g. theorem 2.2 (a) of
[6]). However, the uniqueness of these vacuum states does not seem to follow from
the above assumption. In order to settle this issue, we introduce a strengthened variant
of this criterion which is inspired by the behavior of coincidence arrangements of local
observables. For this purpose we pick one reference vacuum state ω0 ∈ {ωγ

0 |γ ∈ I}, define
the corresponding continuous subspace Ac = ker ω0 and the local continuous subspaces
Ac(O) = {A ∈ A(O)|ω0(A) = 0}. Next, for any double cone O we introduce the Banach
space (Ac(O)×N)∗ of N-linear forms on Ac(O), equipped with the norm

‖ψ‖ = sup
Ai∈Ac(O)1
i∈{1,...,N}

|ψ(A1 × · · · × AN)|. (1.9)

In order to control the minimal distance between the regions in which the measurements are
performed, we define the set of admissible translates of the region O

�N,δ = {	x = (	x1, . . . , 	xN) ∈ R
Ns |∀t∈]−δ,δ[,i =jO + 	xi ∼ O + 	xj + t ê0}, (1.10)

where the symbol ∼ indicates spacelike separation and ê0 is the unit vector in the time direction.
For any 	x ∈ �N,δ and ϕ ∈ TE we introduce the following elements of (Ac(O)×N)∗:

ϕ	x(A1 × · · · × AN) = ϕ(A1(	x1) · · · AN(	xN)). (1.11)

Next, we consider the maps �E,N,δ : TE × �N,δ → (Ac(O)×N)∗, given by

�E,N,δ(ϕ, 	x) = ϕ	x, (1.12)

which are linear in the first argument. Postponing the formal definitions of boundedness and
compactness for such maps to section 2, we state a theorem which is at the basis of our
investigation.

2 We adopt the restrictive definition of compactness from [10]: a map is compact if it can be approximated in norm
by finite-rank mappings. See section 2 for details.
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Theorem 1.2. A theory satisfies condition C� if and only if the maps �E,N,δ are compact for
any E � 0, N ∈ N, δ > 0 and double cone O ⊂ Rs+1.

This result, whose proof is given in section 2, opens the possibility to encode the physically
expected behavior of coincidence arrangement of detectors into the phase space structure of a
theory. We note that any functional from TE should describe systems with only a finite number
of distinct localization centers. Indeed, in a theory of particles of mass m > 0 the maximal
number of such centers N0(E) is given, essentially, by E

m
. If the number of detectors N is

larger than N0(E), then at least one of them should give no response and the result of the entire
coincidence measurement should be zero. We formulate this observation mathematically as a
strengthened, quantitative variant of condition C�:

Condition C�

(a) The maps �E,N,δ are compact for any E � 0, N ∈ N, δ > 0 and double cone O ⊂ Rs+1.
(b) For any E � 0 there exists N0(E) ∈ N s.t. for any N > N0(E) the ε-content3 N (ε)E,N,δ

of the map �E,N,δ satisfies

lim
δ→∞

N (ε)E,N,δ = 1 (1.13)

for any ε > 0.

It is our main result that the reference state ω0, which enters into the definition of the maps
�E,N,δ , is the unique, energetically accessible vacuum state in theories complying with
condition C�. Thus, it defines a distinguished projection Ppp(·) = ω0(·)I on App which
fixes decomposition (1.4).

Our paper is organized as follows: in section 2, we show that the qualitative part (a)
of condition C� is equivalent to condition C� (i.e. we prove theorem 1.2 stated above). In
section 3, we study physical consequences of condition C� which include uniqueness and
purity of the energetically accessible vacuum state as well as various preparation procedures
for this state. In section 4, we verify the quantitative part (b) of the new criterion in massive
free field theory. The more technical part of this discussion is postponed to the appendices.
The paper closes with brief conclusions.

The results presented in this paper were included in the PhD Thesis of the author [9]
completed at the University of Göttingen.

2. Equivalence of conditions C�(a) and C�

In this section, we show that condition C�(a) is equivalent to the existing condition C� i.e. we
prove theorem 1.2 stated in section 1.

First, we specify the notions of compactness which are used in the formulation of
conditions C� and C�: let V and W be Banach spaces and let L(V ,W) denote the space of
linear maps from V to W equipped with the standard norm. Let F(V ,W) denote the subspace
of finite-rank mappings. More precisely, any F ∈ F(V ,W) is of the form F = ∑n

i=1 τiSi ,
where τi ∈ W and Si ∈ V ∗. We say that a map � ∈ L(V ,W) is compact, if it belongs to the
closure of F(V ,W) in the norm topology of L(V ,W). This concept is used in condition C�.
To formulate a notion of compactness which is adequate for condition C�, we need a more

3 Let V, W be Banach spaces and let � be some set. Then the ε-content of a map � : V × � → W

is the maximal natural number N (ε) for which there exist elements (v1, x1), . . . , (vN (ε), xN (ε)) ∈ V1 × � s.t.
‖�(vi, xi ) − �(vj , xj )‖ > ε for i = j .
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general framework: let � be a set and let L(V × �,W) be the space of maps from V × � to
W , linear in the first argument, which are bounded in the norm

‖�‖ = sup
v∈V1
x∈�

‖�(v, x)‖. (2.1)

The subspace of finite-rank maps F(V × �,W) contains all the maps of the form F =∑n
i=1 τiSi , where τi ∈ W,Si ∈ L(V × �, C). We say that a map � ∈ L(V × �,W) is

compact, if it belongs to the closure of F(V × �,W) in the norm topology of L(V × �,W).

Proof. C�(a)⇒C�: setting N = 1 in condition C�(a), we obtain, for any ε > 0, a finite-rank
map F ∈ F(TE × Rs ,Ac(O)∗) s.t.

sup
(ϕ,	x)∈TE,1×Rs

A∈Ac(O)1

|�E,1,δ(ϕ, 	x)(A) − F(ϕ, 	x)(A)| � ε. (2.2)

Noting that �E,1,δ(ϕ, 	x) = �E(ϕ	x)|Ac(O) and making use of the fact that 1
2 (A − ω0(A)I) ∈

Ac(O)1 for any A ∈ A(O)1, we obtain

sup
ϕ∈TE,1

A∈A(O)1

|�E(ϕ)(A) − ϕ(I)ω0(A) − F(ϕ, 0)(A − ω0(A)I)| � 2ε. (2.3)

Thus, we can approximate the map �E in norm with finite-rank mappings up to an arbitrary
accuracy, i.e. this map is compact. �

The opposite implication is more interesting. It says that the restriction imposed by
condition C� on the number of states which can be distinguished by measurements with singly
localized detectors limits also the number of states which can be discriminated by coincidence
arrangements of such detectors. We start our analysis from the observation that the spatial
distance between the detectors suppresses the energy transfer between them. The proof of the
following lemma relies on methods from [11].

Lemma 2.1. Let δ > 0, β > 0. Define the function g :] − π, π ] → C as follows

g(φ) = β

π
ln

∣∣∣∣cot
φ + γ

2
cot

φ − γ

2

∣∣∣∣ , (2.4)

where γ = 2 arctan e− πδ
2β . Then, for any pair of bounded operators A,B satisfying

[A(t), B] = 0 for |t | < δ and any functional ϕ ∈ e−βHT e−βH , there holds the identity

ϕ(AB) = ϕ([A, B̊β]+) + ϕ(Ae−βH BβeβH ) + ϕ(eβH Bβe−βH A), (2.5)

where [·, ·]+ denotes the anti-commutator and we made use of the fact that ϕ(eβH · ), ϕ( · eβH )

are elements of T . Here B̊β and Bβ are elements of B(H) given by the (weak) integrals

B̊β = 1

2π

∫ γ

0
dφB(g(φ)) +

1

2π

∫ π

π−γ

dφB(g(φ)), (2.6)

Bβ = 1

2π

∫ π−γ

γ

dφB(g(φ)), (2.7)

where B(g(φ)) = eig(φ)H Be−ig(φ)H .

Proof. It suffices to prove the statement for functionals of the form ϕ(·) = (�1| · �2), where
�1 and �2 are vectors from the domain of eβH . For δ > 0 and β > 0 we define the set

Gβ,δ = {z ∈ C||Imz| < β}\{z|Imz = 0, |Rez| � δ} (2.8)

5
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and introduce the following function, analytic on Gβ,δ and continuous at its boundary

h(z) =
⎧⎨⎩

(�1|AeizH Be−izH �2) for 0 < Imz < β

(�1|eizH Be−izH A�2) for − β < Imz < 0
(�1|AB(z)�2) = (�1|B(z)A�2) for Imz = 0 and |Rez| < δ.

(2.9)

We make use of the following conformal mapping from the unit disc {w||w| < 1} to Gβ,δ [11]

z(w) = β

π

{
ln

1 + weiγ

1 − weiγ
− ln

1 − we−iγ

1 + we−iγ

}
. (2.10)

Setting w = reiφ, 0 < r < 1, we obtain from the Cauchy formula

h(0) = 1

2π

∫ π

−π

dφh(z(reiφ)). (2.11)

Since h(z) satisfies the following bound on the closure of Gβ,δ:

|h(z)| � ‖A‖‖B‖‖eβH �1‖‖eβH �2‖, (2.12)

we can, by the dominated convergence theorem, extend the path of integration in relation (2.11)
to the circle r = 1. In this limit we have [11]

Re z(eiφ) = g(φ), (2.13)

Im z(eiφ) =
⎧⎨⎩

0 if |φ| < γ or π − φ < γ or π + φ < γ

β if γ < φ < π − γ

−β if γ < −φ < π − γ.

(2.14)

Consequently, we obtain from (2.11)

(�1|AB�2) = 1

2π

∫ γ

0
dφ(�1|[A,B(g(φ))]+�2) +

1

2π

∫ π

π−γ

dφ(�1|[A,B(g(φ))]+�2)

+
1

2π

∫ π−γ

γ

dφ
((

�1|Ae−βH B(g(φ))eβH �2) + (eβH �1|B(g(φ))e−βH A�2
))

,

(2.15)

which concludes the proof. �

In order to complete the proof of theorem 1.2, we have to proceed from the sharp energy
bounds assumed in condition C� to the exponential energy damping which is established in
lemma 2.1. Making use of the fact that T ∗

E = PEB(H)PE , condition C� can be restated as a
requirement that the maps �̂E : A(O) → B(H), given by �̂E(A) = PEAPE , are compact for
any E � 0 and any double cone O. (See [10] for a similar discussion). With the help of the
estimate

‖e−βH Ae−βH − e−βH PEAPEe−βH ‖ � 2‖A‖e−βE, (2.16)

one also concludes that the maps �β and �β1,β2 from L(A(O), B(H)), defined as

�β(A) = e−βH Ae−βH , (2.17)

�β1,β2(A) = e−β1HAβ2 e−β1H , (2.18)

are compact for any β, β1, β2 > 0 and any double cone O. Aβ2 is given by definition (2.7).

6
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Proof. C� ⇒ C�(a): for any β > 0 we introduce the auxiliary maps �̂β,N,δ ∈
L(T × �N,δ, (Ac(O)×N)∗) given by

�̂β,N,δ(ϕ, 	x)(A1 × · · · × AN) = ϕ(e−(N+ 1
2 )βH A1(	x1) · · · AN(	xN)e−(N+ 1

2 )βH ). (2.19)

They are related to the maps �E,N,δ ∈ L(TE × �N,δ, (Ac(O)×N)∗) by the following identity,
valid for any ϕ ∈ TE

�E,N,δ(ϕ, 	x) = �̂β,N,δ(e
(N+ 1

2 )βH ϕe(N+ 1
2 )βH , 	x). (2.20)

In order to prove the compactness of the maps �E,N,δ , it suffices to verify that the family of
mappings {�̂β,N,δ}β>0 is asymptotically compact in the following sense: there exists a family
of finite-rank maps F̂β,N,δ ∈ F(T × �N,δ, (Ac(O)×N)∗) s.t.

lim
β→0

‖�̂β,N,δ − F̂β,N,δ‖ = 0. (2.21)

If this property holds, then, by identity (2.20), the maps �E,N,δ can be approximated in norm
as β → 0 by the finite-rank maps Fβ,N,δ ∈ L(TE × �N,δ, (Ac(O)×N)∗) defined as

Fβ,N,δ(ϕ, 	x) = F̂β,N,δ(e
(N+ 1

2 )βH ϕe(N+ 1
2 )βH , 	x). (2.22)

We establish property (2.21) by induction in N: for N = 1 the statement follows from
compactness of the map � 3

2 β given by (2.17). Next, we assume that the family {�̂β,N−1,δ}β>0

is asymptotically compact and prove that {�̂β,N,δ}β>0 also has this property. For this purpose,
we pick ϕ ∈ T1, A1, . . . , AN ∈ Ac(O)1 and 	x ∈ �N,δ . Then A1(	x1) . . . AN−1(	xN−1) and
AN(	xN) satisfy the assumptions of lemma 2.1 and we obtain

�̂β,N,δ(ϕ, 	x)(A1 × · · · × AN)

= ϕ(e−(N+ 1
2 )βH [A1(	x1) . . . AN−1(	xN−1), ÅN,Nβ(	xN)]+e−(N+ 1

2 )βH )

+ �̂β,N−1,δ

({� 1
2 β,Nβ(AN)(	xN)ϕe−βH }, 	x1, . . . , 	xN−1

)
(A1 × · · · × AN−1)

+ �̂β,N−1,δ({e−βH ϕ� 1
2 β,Nβ(AN)(	xN)}, 	x1, . . . , 	xN−1)(A1 × · · · × AN−1).

(2.23)

The first term on the rhs of (2.23) satisfies

|ϕ(e−(N+ 1
2 )βH [A1(	x1) · · · AN−1(	xN−1), ÅN,Nβ(	xN)]+e−(N+ 1

2 )βH )| � 2γ (Nβ)

π
, (2.24)

where we made use of definition (2.6). We recall from the statement of lemma 2.1
that γ (Nβ) → 0 with β → 0. To treat the remaining terms, we make use of the
induction hypothesis: it assures that there exist finite-rank mappings F̂β,N−1,δ ∈ F(T ×
�N−1,δ, (Ac(O)×N−1)∗) s.t.

lim
β→0

‖�̂β,N−1,δ − F̂β,N−1,δ‖ = 0. (2.25)

Next, making use of the compactness of the maps � 1
2 β,Nβ ∈ L(A(O), B(H)), given by

formula (2.18), we can find a family of finite-rank mappings Fβ ∈ F(A(O), B(H)) s.t.

‖� 1
2 β,Nβ − Fβ‖ � β

1 + ‖F̂β,N−1,δ‖
, (2.26)

for any β > 0. Now the second term on the rhs of (2.23) can be rewritten as follows:

�̂β,N−1,δ({� 1
2 β,Nβ(AN)(	xN)ϕe−βH }, 	x1, . . . , 	xN−1)

= (�̂β,N−1,δ − F̂β,N−1,δ)({� 1
2 β,Nβ(AN)(	xN)ϕe−βH }, 	x1, . . . , 	xN−1)

+ F̂β,N−1,δ({(� 1
2 β,Nβ(AN) − Fβ(AN))(	xN)ϕe−βH }, 	x1, . . . , 	xN−1)

+ F̂β,N−1,δ({Fβ(AN)(	xN)ϕe−βH }, 	x1, . . . , 	xN−1). (2.27)

7
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We obtain from relations (2.25) and (2.26) that the first two terms on the rhs of
equation (2.27) tend to zero with β → 0 in the norm topology of (Ac(O)×N−1)∗, uniformly
in ϕ ∈ T1, AN ∈ Ac(O)1 and 	x ∈ �N,δ . The last term on the rhs of relation (2.27) coincides
with the finite-rank map F̂

(1)
β,N,δ ∈ F(T × �N,δ, (Ac(O)×N)∗), given by

F̂
(1)
β,N,δ(ϕ, 	x)(A1 × · · · × AN)

= F̂β,N−1,δ({Fβ(AN)(	xN)ϕe−βH }, 	x1, . . . , 	xN−1)(A1 × · · · × AN−1). (2.28)

The last term on the rhs of (2.23) can be analogously approximated by the maps F̂
(2)
β,N,δ ∈

F(T × �N,δ, (Ac(O)×N)∗) defined as

F̂
(2)
β,N,δ(ϕ, 	x)(A1 × · · · × AN)

= F̂β,N−1,δ({e−βH ϕFβ(AN)(	xN)}, 	x1, . . . , 	xN−1)(A1 × · · · × AN−1). (2.29)

Summing up, we obtain from (2.23) and (2.24) that

lim
β→0

‖�̂β,N,δ − F̂
(1)
β,N,δ − F̂

(2)
β,N,δ‖ = 0, (2.30)

which concludes the inductive argument and the proof of theorem 1.2. �

3. Condition C� and the vacuum structure

In this section we show that the vacuum state ω0, which entered into the formulation of
condition C�, is pure and that it is the only energetically accessible vacuum state. Similarly
as in [6], there follows relaxation of physical states to ω0 under large timelike translations and
appearance of this vacuum state as a limit of states of increasingly sharp energy–momentum
values.

We recall that the ε-contents of the maps �E,N,δ , which entered into the formulation
of condition C�, have direct physical interpretation: they restrict the number of different
measurement results which may occur in coincidence arrangements of local operators from
Ac(O). However, for many applications it is more convenient to work with the norms of the
maps �E,N,δ . The link is provided by the following lemma.

Lemma 3.1. Let V and W be Banach spaces and let {�δ}δ>0 be a family of sets ordered
by inclusion i.e. �δ1 ⊂ �δ2 for δ1 � δ2. Let {�δ}δ>0 be a family of compact maps from
L(V ×�δ,W) and letN (ε)δ be the respective ε-contents. Then there holds limδ→∞ N (ε)δ = 1
for any ε > 0 if and only if limδ→∞ ‖�δ‖ = 0.

Proof. First, suppose that limδ→∞ N (ε)δ = 1 for any ε > 0. Since the ε-content takes only
integer values, for any ε > 0 we can choose δε s.t. N (ε)δ = 1 for δ � δε. Then, by definition
of the ε-content, there holds for any δ � δε

‖�δ‖ � ε, (3.1)

which entails limδ→∞ ‖�δ‖ = 0.
To prove the opposite implication, we proceed by contradiction: we recall that the ε-

content of a compact map is finite for any ε > 0. Next, we note that for any fixed ε > 0
the function δ → N (ε)δ is decreasing and bounded from below by one, so there exists
limδ→∞ N (ε)δ . Suppose that this limit is strictly larger than one. Then, by definition of the
ε-content, there exist nets (ϕ

(δ)
1 , 	x(δ)

1 ) and (ϕ
(δ)
2 , 	x(δ)

2 ) in V1 × �δ s.t.∥∥�δ

(
ϕ

(δ)
1 , 	x(δ)

1

)− �δ

(
ϕ

(δ)
2 , 	x(δ)

2

)∥∥ > ε (3.2)

8
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for any δ > 0. However, this inequality contradicts the assumption that the norms of the maps
�δ tend to zero with δ → ∞. �

With the help of the above lemma we reformulate condition C�(b) as follows: for any
E � 0 there exists such natural number N0(E) that for any N > N0(E)

lim
δ→∞

sup
Ai∈Ac(O)1
i∈{1,...N}
	x∈�N,δ

‖PEA1(	x1) · · · AN(	xN)PE‖ = 0. (3.3)

We use this relation in the following key lemma.

Lemma 3.2. Suppose that condition C� holds. Then, for any E � 0, double cone O, and a
sequence {δ(n)}∞1 s.t. δ(n)−→

n→∞∞, the following assertions hold true:

(a) For any family of points {	x(n)
i }n1 ∈ �n,δ(n) there holds

lim
n→∞ sup

ϕ∈TE,1
A∈Ac(O)1

∣∣∣∣∣1n
n∑

i=1

ϕ
(
A
(	x(n)

i

))∣∣∣∣∣ = 0. (3.4)

(b) For any unit vector ê ∈ Rs , sequence {λ(n)}∞1 ∈ R+ and a family of points {	x(n)
i }n1 , s.t.

{	x(n)
i }n1 ∪ {	x(n)

i + λ(n)ê}n1 ∈ �2n,δ(n), there holds

lim
n→∞ sup

ϕ∈TE,1
A,B∈Ac(O)1

∣∣∣∣∣1n
n∑

i=1

ϕ
(
A
(	x(n)

i

)
B
(	x(n)

i + λ(n)ê
))∣∣∣∣∣ = 0. (3.5)

Proof. It is a well-known fact that any normal, self-adjoint functional on a von Neumann
algebra can be expressed as a difference of two normal, positive functionals which are mutually
orthogonal [12]. It follows that any ϕ ∈ TE,1 can be decomposed as

ϕ = ϕ+
Re − ϕ−

Re + i(ϕ+
Im − ϕ−

Im), (3.6)

where ϕ±
Re, ϕ

±
Im are positive functionals from TE,1. Therefore, it suffices to prove relations

(3.4) and (3.5) for the set T +
E,1 of positive functionals from TE,1. By a similar argument, it

suffices to consider self-adjoint operators A,B ∈ Ac(O) in both statements.
We choose some positive functional ϕ ∈ T +

E,1, pick m ∈ N s.t. N = 2m is sufficiently large

to ensure that (3.3) holds. To prove (a), we define operators Qn = 1
n

∑n
i=1 A(	x(n)

i ), n ∈ N,
where A ∈ Ac(O) is self-adjoint, assume that n � N and compute

|ϕ(Qn)|N � ϕ
(
QN

n

) = 1

nN

∑
i1,...,iN

ϕ
(
A
(	x(n)

i1

) · · ·A(	x(n)
iN

))
= 1

nN

∑
i1 ,...,iN

∀k =l ik =il

ϕ
(
A
(	x(n)

i1

) · · · A(	x(n)
iN

))
+

1

nN

∑
i1 ,...,iN

∃k =l s.t.ik=il

ϕ
(
A
(	x(n)

i1

) · · · A(	x(n)
iN

))
� 1

nN

∑
i1 ,...,iN

∀k =l ik =il

‖PEA
(	x(n)

i1

) · · ·A(	x(n)
iN

)
PE‖ +

1

nN

∑
i1 ,...,iN

∃k =l s.t.ik=il

‖A‖N . (3.7)

In the first step above we applied the Cauchy–Schwarz inequality and in the third step we
extracted from the resulting sum the terms in which all the operators are mutually spacelike

9
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separated. Clearly, there are
(

n

N

)
N ! � nN such terms. Therefore, the remainder (the last sum

above) consists of

nN −
(

n

N

)
N ! � cNnN−1 (3.8)

terms. There follows the estimate

|ϕ(Qn)|N � sup
A∈Ac(O)1

(	x1 ,...,	xN )∈�N,δ(n)

‖PEA(	x1) · · · A(	xN)PE‖ +
cN

n
‖A‖N, (3.9)

whose rhs tends to zero with n → ∞ by (3.3), uniformly in ϕ ∈ T +
E,1, what concludes the

proof of (3.4).
In order to prove (b), we proceed similarly: let Q̂n = 1

n

∑n
i=1 A

(	x(n)
i

)
B
(	x(n)

i + λ(n)ê
)
,

where A,B ∈ Ac(O) are self-adjoint. Then, for n � N , we obtain

|ϕ(Q̂n)|N � ϕ(Q̂N
n )

= 1

nN

∑
i1,...,iN

ϕ
(
A
(	x(n)

i1

)
B
(	x(n)

i1
+ λ(n)ê

) · · ·A(	x(n)
iN

)
B
(	x(n)

iN
+ λ(n)ê

))
= 1

nN

∑
i1 ,...,iN

∀k =l ik =il

ϕ
(
A
(	x(n)

i1

)
B
(	x(n)

i1
+ λ(n)ê

) · · ·A(	x(n)
iN

)
B
(	x(n)

iN
+ λ(n)ê

))
+

1

nN

∑
i1 ,...,iN

∃k =l s.t.ik=il

ϕ
(
A
(	x(n)

i1

)
B
(	x(n)

i1
+ λ(n)ê) . . . A

(	x(n)
iN

)
B
(	x(n)

iN
+ λ(n)ê

))
� 1

nN

∑
i1 ,...,iN

∀k =l ik =il

∥∥PEA
(	x(n)

i1

)
B
(	x(n)

i1
+ λ(n)ê

)
. . . A

(	x(n)
iN

)
B
(	x(n)

iN
+ λ(n)ê

)
PE

∥∥
+

1

nN

∑
i1 ,...,iN

∃k =l s.t.ik=il

(‖A‖‖B‖)N . (3.10)

By the same reasoning as in case (a) we obtain the estimate

|ϕ(Q̂n)|N � sup
A∈Ac(O)1

(	x1 ,...,	x2N )∈�2N,δ(n)

‖PEA(	x1)B(	x2) · · · A(	x2N−1)B(	x2N)PE‖

+
cN

n
(‖A‖‖B‖)N . (3.11)

By taking the limit n → ∞ we conclude the proof of (3.5). �

Now we are ready to prove our main theorem.

Theorem 3.3. Suppose that condition C� is satisfied. Then there hold the following assertions:

(a) Let ω ∈ A∗ be a state in the weak∗ closure of TE,1 which is invariant under translations
in space. Then ω = ω0.

(b) ω0 is a pure state.

Proof. In part (a) we proceed similarly as in the proof of theorem 2.2 (b) from [6]: let {ϕβ}β∈I

be a net of functionals from TE,1 approximating ω in the weak∗ topology and let A ∈ Ac(O)

10
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i.e. ω0(A) = 0. We choose families of points {	xi}n1 in Rs s.t. {	xi}n1 ∈ �n,δ(n) for some sequence
{δ(n)}∞1 which diverges to infinity with n → ∞. We note the following relation

|ω(A)| =
∣∣∣∣∣1n

n∑
i=1

ω
(
A
(	x(n)

i

))∣∣∣∣∣ = lim
β

∣∣∣∣∣1n
n∑

i=1

ϕβ

(
A
(	x(n)

i

))∣∣∣∣∣
� sup

ϕ∈TE,1

∣∣∣∣∣1n
n∑

i=1

ϕ
(
A
(	x(n)

i

))∣∣∣∣∣ −→
n→∞0, (3.12)

where in the first step we made use of the fact that the state ω is invariant under translations in
space and in the last step we made use of lemma 3.2 (a). Since local algebras are norm dense
in the global algebra A, we conclude that ker ω0 ⊂ ker ω and therefore the two states are equal.

Let us now proceed to part (b) of the theorem. In order to show purity of ω0, it suffices
to verify that for any A,B ∈ Ac(O), some unit vector ê ∈ Rs and some sequence of real
numbers {λ(n)}∞1 s.t. λ(n)−→

n→∞∞ there holds

lim
n→∞ ω0(AB(λ(n)ê)) = 0. (3.13)

To this end, we pick a net {ϕβ}β∈I of functionals from TE,1, approximating ω0 in the weak∗

topology. (Such nets exist, since ω0 is energetically accessible). Next, we choose families of
points {	x(n)

i }n1 as in part (b) of lemma 3.2 and compute

|ω0(AB(λ(n)ê))| =
∣∣∣∣∣1n

n∑
i=1

ω0
(
A
(	x(n)

i

)
B(	x(n)

i + λ(n)ê)
)∣∣∣∣∣

= lim
β

∣∣∣∣∣1n
n∑

i=1

ϕβ

(
A
(	x(n)

i

)
B
(	x(n)

i + λ(n)ê
))∣∣∣∣∣

� sup
ϕ∈TE,1

∣∣∣∣∣1n
n∑

i=1

ϕ
(
A(	x(n)

i

)
B
(	x(n)

i + λ(n)ê
))∣∣∣∣∣ −→

n→∞0, (3.14)

which proves relation (3.13). �

As a corollary we obtain the convergence of states of bounded energy to the vacuum
state under large spacelike or timelike translations. (It is an interesting open problem if this
corollary holds also for lightlike directions).

Corollary 3.4. Let condition C� be satisfied. Then, for any state ω ∈ TE,E � 0, and a
spacelike or timelike unit vector ê ∈ Rs+1, there holds

lim
λ→∞

ωλê(A) = ω0(A) for A ∈ A. (3.15)

Proof. First, let ê be a spacelike vector. Then, by locality, {A(λê)}λ>0 is a central net in
A for any A ∈ A. Thus, by the irreducibility assumption, its limit points as λ → ∞ in the
weak∗ topology of B(H) are multiples of the identity. It follows that the limit points of the net
{ωλê}λ>0 are translationally invariant and energetically accessible states. By theorem 3.3 (a),
the only such state is ω0.

If ê is a timelike vector, the proof relies on an observation due to Buchholz that limit points
of {ωλê}λ>0 as λ → ∞ are invariant under translations in some spacelike hyperplane as a result
of Lorentz covariance. (See lemma 2.3 of [6]). Then it follows from theorem 2.2 (a) of [6]
that these limit points are vacuum states. They coincide with ω0 due to theorem 3.3 (a) above.

�
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To conclude this survey of applications of condition C�, we recall from [6] another
physically meaningful procedure for the preparation of vacuum states: it is to construct states
with increasingly sharp values of energy and momentum, and exploit the uncertainty principle.
Let P(p,r) be the spectral projection corresponding to the ball of radius r centered around point
p in the energy–momentum spectrum and T(p,r) = P(p,r)T P(p,r). Proceeding analogously as
in proposition 2.5 of [6] and exploiting relation (3.4), we obtain the following result.

Proposition 3.5. Suppose that condition C� is satisfied. Then, for any p ∈ V + and double
cone O, there holds

lim
r→0

sup
ϕ∈T(p,r),1
A∈A(O)1

|ϕ(A) − ϕ(I)ω0(A)| = 0. (3.16)

4. Condition C� (b) in massive scalar free field theory

We showed in section 2 that the qualitative part (a) of condition C� holds in all theories
satisfying condition C�, in particular in (massive and massless) scalar free field theory in
physical spacetime [10]. Moreover, we argued in section 1 that in physically meaningful,
massive theories there should also hold the strengthened, quantitative part (b) of this condition.
As we demonstrated in section 3, this quantitative refinement has a number of interesting
consequences pertaining to the vacuum structure. It is the goal of the present section to
illustrate the mechanism which enforces condition C� (b) by a direct computation in a theory
of massive, non-interacting particles.

To establish notation, we recall some basic facts concerning free scalar field theory in s
space dimensions: the Hilbert space H is the Fock space over L2(Rs , dsp). To a double cone
O, whose base is the s-dimensional ball Or of radius r, centered at the origin, there correspond
the closed subspaces L± := [ω∓ 1

2 D̃(Or )] and we denote the respective projections by the
same symbols. Defining J to be the complex conjugation in configuration space, we introduce
the real linear subspace

L = (1 + J )L+ + (1 − J )L− (4.1)

and the corresponding von Neumann algebra

A(O) = {W(f )|f ∈ L}′′, (4.2)

where W(f ) = ei(a∗(f )+a(f )). The vacuum state ω0 is induced by the Fock space vacuum �,
i.e. ω0(·) = (�| · �), and there holds

ω0(W(f )) = e− 1
2 ‖f ‖2

. (4.3)

The unitary representation of translations has the following form in the single-particle space:

(U1(x)f )(	p) = ei(ω(	p)t−	p	x)f (	p) =: fx(	p), (4.4)

where x = (t, 	x), ω(	p) =
√

	p2 + m2 and we assume that m > 0. The translation
automorphisms are given by αx(·) = U(x) · U(x)∗, where U(x) is the second quantization
of U1(x). With the help of translations we define local algebras attached to double cones
centered at any point of spacetime. Our task is to show that the resulting local net satisfies
condition C�.

Theorem 4.1. Massive scalar-free field theory satisfies condition C�.
�

12
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Proof. The main ingredient of the proof is the following elementary evaluation of the N-linear
form �E,N,δ(ϕ, 	x), where ϕ ∈ TE,1, 	x ∈ �N,δ , on the generating elements of Ac(O)

�E,N,δ(ϕ, 	x)({W(f1) − ω0(W(f1))I } × · · · × {W(fN) − ω0(W(fN))I })
= ϕ

(
(W
(
f1,	x1

)− ω0(W(f1))I ) · · · (W (
fN,	xN

)− ω0(W(fN))I
))

=
∑
R1,R2

(−1)|R2|e− 1
2

∑|R2 |
k=1 ‖fjk

‖2
ϕ
(
W
(
fi1,	xi1

+ · · · + fi|R1 |,	xi|R1 |

))
=

∑
R1,R2

(−1)|R2|e− 1
2

∑N
k=1 ‖fk‖2

e−∑1�k<l�|R1 | Re〈fik ,	xik
|fil ,	xil

〉

·ϕ( : W
(
fi1,	xi1

) · · · W (
fi|R1 |,	xi|R1 |

)
:
)

=
∑
R1,R2

(−1)|R2|e− 1
2

∑N
k=1 ‖fk‖2(

e−∑1�k<l�|R1 | Re〈fik ,	xik
|fil ,	xil

〉 − 1
)

·ϕ( : W
(
fi1,	xi1

) · · · W (
fi|R1 |,	xi|R1 |

)
:
)

+ e− 1
2

∑N
k=1 ‖fk‖2

∑
R1,R2

(−1)|R2|ϕ
(

: W
(
fi1,	xi1

+ · · · + fi|R1 |,	xi|R1 |

)
:
)
, (4.5)

where the sum extends over all partitions R1 = (i1, . . . , i|R1|), R2 = (j1, . . . , j|R2|) of an N-
element set into two, possibly improper, ordered subsets. (If the condition 1 � k < l � |R1|
is empty, the corresponding sum is understood to be zero). In the second step, we made use
of the fact that the Weyl operators are localized in spacelike separated regions. In the third
step, we applied the identity W(f ) = e− 1

2 ‖f ‖2
: W(f ) : and in the last step, we divided the

expression into two parts: the first part tends to zero for large spacelike separations, due to the
decay of 〈f1,x1 |f2,x2〉 when x1 − x2 tends to spacelike infinity. In the next lemma, we show
that the last sum on the rhs of (4.5) vanishes for N > 2 E

m
, so we can omit this last term in the

subsequent discussion.

Lemma 4.2. Let E � 0, ϕ ∈ TE and N > 2 E
m

be a natural number. Then there holds

S :=
∑
R1,R2

(−1)|R2|ϕ(: W(fi1,	xi1
+ · · · + fi|R1 |,	xi|R1 | ) :) = 0, (4.6)

where the sum extends over all partitions of an N-element set into disjoint sets R1, R2.

Proof. For any f ∈ L2(Rs , dsp) we introduce the map M(f ) : B(H) → B(H) given by

M(f )(C) = PEeia∗(f )Ceia(f )PE, C ∈ B(H). (4.7)

The exponentials are defined by their Taylor expansions which are finite (in the massive theory)
due to the energy projections. The range of M(f ) belongs to B(H) due to the energy bounds
[10] which in the massive case give

‖a(f1) · · · a(fn)PE‖ �
(

E

m

) n
2

‖f1‖ · · · ‖fn‖ (4.8)

for any f1, . . . , fn ∈ L2(Rs , dsp). Making use of the fact that eia(f )PE = PEeia(f )PE ,
we obtain M(f1)M(f2) = M(f2)M(f1) for any f1, f2 ∈ L2(Rs , dsp). Moreover,
M(0)(C) = PECPE for any C ∈ B(H). We denote by Î the identity operator acting
from B(H) to B(H). There clearly holds

S =
∑
R1,R2

(−1)|R2|ϕ
(
M
(
fi1,	xi1

) · · ·M(
fi|R1 |,	xi|R1 |

)
(I )
)

= ϕ
((

M
(
f1,	x1

)− Î
) · · · (M(

fN,	xN

)− Î )(I )
)

= ϕ
((

M
(
f1,	x1

)− M(0)
) · · · (M(

fN,	xN

)− M(0)
)
(I )
)
, (4.9)
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where the last equality holds due to the fact that ϕ ∈ TE . Finally, we note that for any
C ∈ B(H) (

M(f ) − M(0)
)
(C) =

∑
k+l�1

PE

(ia∗(f ))k

k!
C

(ia(f ))l

l!
PE. (4.10)

Substituting this relation into (4.9) the assertion follows. �

We will exploit relation (4.5) to show that for N > 2 E
m

the norms of the maps �E,N,δ

tend to zero with δ → ∞, what entails condition C� in view of lemma 3.1. To this end, we
introduce the *-algebra A0(O), generated by finite linear combinations of Weyl operators and
denote by (A0(O)×M)∗ the space of (not necessarily bounded) M-linear forms on A0(O). We
define the maps �′

E,M,δ : TE × �M,δ → (A0(O)×M)∗, linear in the first argument, extending
by linearity the following expression:

�′
E,M,δ(ϕ, 	x)(W(f1) × · · · × W(fM))

= e− 1
2

∑M
k=1 ‖fk‖2

(e−∑1�i<j�M Re〈fi,	xi
|fj,	xj

〉 − 1)ϕ(: W(f1,	x1 + · · · + fM,	xM
) :). (4.11)

We obtain from (4.5) the equality valid for N > 2 E
m

�E,N,δ(ϕ, 	x)
({W(f1) − ω0(W(f1))I } × · · · × {W(fN) − ω0(W(fN))I })

=
∑
R1,R2

(−1)|R2|ω0(W(fj1)) · · · ω0(W(fj|R2 |)) ·

·�′
E,|R1|,δ(ϕ, 	x)(W(fi1) × · · · × W(fi|R1 |)). (4.12)

To conclude the argument we need the following technical lemma.

Lemma 4.3. For any M ∈ N, E � 0, double cone O and sufficiently large δ > 0 (depending
on M,E and O) there exist the maps �′′

E,M,δ ∈ L(TE × �M,δ, (A(O)⊗M)∗) which have the
properties

(a) limδ→∞ ‖�′′
E,M,δ‖ = 0;

(b) �′′
E,M,δ(ϕ, 	x)(A1 ⊗· · ·⊗AM) = �′

E,M,δ(ϕ, 	x)(A1 ×· · ·×AM) for A1, . . . , AM ∈ A0(O)

and any (ϕ, 	x) ∈ TE × �M,δ .

In view of this lemma, whose proof is postponed to appendix A, equality (4.12) can now
be rewritten as follows, for sufficiently large N, δ and any A1, . . . , AN ∈ Ac(O)

�E,N,δ(ϕ, 	x)(A1 × · · · × AN) = �′′
E,N,δ(ϕ, 	x)(A1 ⊗ · · · ⊗ AN), (4.13)

where we made use of the facts that ω0(A1) = · · · = ω0(AN) = 0,A0(O) is dense in
A(O) in the strong operator topology, and �′′

E,M,δ(ϕ, 	x) is a normal functional on (A(O)⊗M).
Consequently, for N > 2 E

m
, the map �E,N,δ shares the properties of �′′

E,N,δ stated in lemma 4.3.
In addition we know from theorem 1.2 that the maps �E,N,δ are compact for any δ > 0. Making
use of lemma 3.1 we conclude that condition C� is satisfied. �

We remark that the assumption m > 0 is used only in one (crucial) step in the above
proof, namely to eliminate the last term in relation (4.5) and establish equality (4.13). The
properties of the maps �′

E,M,δ , stated in lemma 4.3, hold in massless free field theory as well.
However, a complete verification argument for condition C� in the massless case has not been
found yet.
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5. Conclusions

In this work, we introduced and verified in a model the phase space condition C� which
encodes localization of physical states in space. More precisely, it says that any coincidence
arrangement of spacelike separated observables with vanishing vacuum expectation values
gives zero response if the number of observables is much larger than the number of localization
centers which form the state. From this physically motivated observation we derived detailed
information about the vacuum state: it is pure and unique in the energetically connected
component of the state space, it can be prepared with the help of states with increasingly sharp
energy–momentum values and appears as a limit of physical states under large spacelike or
timelike translations.

This last property corroborates the intuitive picture of spreading of wave packets which
prevents the detection of particles with the help of observables of fixed spatial extension.
In order to determine the particle content and compute collision cross sections, one has to
consider coincidence arrangements of particle detectors, whose responses are suitably rescaled
with time [3, 13–15]. The methods developed in the present work are also of relevance to the
study of these interesting problems.
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Appendix A. Proof of lemma 4.3

The goal of this appendix is to construct the maps �′′
E,M,δ ∈ L(TE × �M,δ, (A(O)⊗M)∗) and

verify that they have the properties (a) and (b) specified in lemma 4.3. We will define these
maps as norm-convergent sums of rank-one mappings, i.e.

�′′
E,M,δ =

∞∑
i=1

τiSi, (A.1)

where τi ∈ (A(O)⊗M)∗ and Si ∈ L(TE × �M,δ, C).
In order to construct a suitable family of functionals τi , we recall some facts from

[16, 17]: given any pair of multi-indices μ+, μ− and an orthonormal basis {ei}∞1 of J -
invariant eigenvectors in the single-particle space L2(Rs , dsp), one defines a normal functional
τμ+,μ− ∈ B(H)∗ by the following formula:

τμ+,μ−(A) =
(

1

2

)|μ+|+|μ−|
i−|μ+|−2|μ−| ∑

α++α′++α′′+=μ+

α−+α′−+α′′−=μ−

(−1)|α
′+|+|α′′−| μ+!

α+!α′+!α′′+!

μ−!

α−!α′−!α′′−!

·(�|a(e)α
++α−

a∗(e)α
′++α′−

Aa∗(e)α
′′++α′′−

�), (A.2)

where A ∈ B(H) and α±, α′±, α′′± are multi-indices. It is shown in [16] that these functionals
take the following values on the Weyl operators:

τμ+,μ−(W(f )) = e− 1
2 ‖f ‖2〈e|f +〉μ+〈e|f −〉μ−

, (A.3)
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where f = f + + if − ∈ L and f +, f − are the real and imaginary parts of f in configuration
space. It is also established there that the norms of these functionals satisfy the bound

‖τμ+,μ−‖ � 4|μ+|+|μ−|(μ+!μ−!)
1
2 . (A.4)

Turning to the definition of suitable functionals on B(H)⊗M , we introduce M-tuples of multi-
indices μ± = (μ±

1 , . . . , μ±
M) and the corresponding 2M-multi-indices μ = (μ+, μ−). We

extend the standard rules of the multi-index notation as follows:

|μ| =
M∑
i=1

(|μ+
i | + |μ−

i |), (A.5)

μ! =
M∏
i=1

μ+
i !μ−

i !, (A.6)

〈e|f 〉μ =
M∏
i=1

〈e|f +
i 〉μ+

i 〈e|f −
i 〉μ−

i , (A.7)

where f1, . . . , fM ∈ L. Now for any 2M-multi-index μ we define a normal functional τμ on
B(H)⊗M by the expression

τμ = τμ+
1 ,μ−

1
⊗ · · · ⊗ τμ+

M,μ−
M
. (A.8)

From relations (A.3), (A.4) and the polar decomposition of a normal functional [12] one
immediately obtains

Lemma A.1. Let {ei}∞1 be an orthonormal basis in L2(Rs , dsp) of J -invariant eigenvectors.
The functionals τμ ∈ (B(H)⊗M)∗ given by (A.8) have the following properties:

(a) τμ(W(f1) ⊗ · · · ⊗ W(fM)) = e− 1
2

∑M
k=1 ‖fk‖2〈e|f 〉μ;

(b) ‖τμ‖ � 4|μ|(μ!)
1
2 ;

where f1, . . . , fM ∈ L.

In order to construct a basis {ei}∞1 in L2(Rs , dsp) of J -invariant eigenvectors, which
is suitable for our purposes, we recall, with certain modifications, some material from the
literature. Let QE be the projection on states of energy lower than E in the single-particle

space. We define the operators T ±
E = QEL± and T ±

κ = e− |ω|κ
2 L±, where 0 < κ < 1.

By a slight modification of lemma 3.5 from [10] one finds that these operators satisfy
‖T ±

E ‖1 < ∞, ‖T ±
κ ‖1 < ∞, where ‖ · ‖1 denotes the trace norm. We define the operator

T as follows:

T 2 = |T +
E |2 + |T −

E |2 + |T +
κ |2 + |T −

κ |2. (A.9)

Making use of the estimate ‖(A + B)p‖1 � ‖Ap‖1 + ‖Bp‖1, valid for any 0 < p � 1 and any
pair of positive operators A,B s.t. Ap,Bp are trace class [18], we obtain

‖T ‖1 � ‖T +
E‖1 + ‖T −

E ‖1 + ‖T +
κ ‖1 + ‖T −

κ ‖1 < ∞. (A.10)

Since T commutes with J , it has a J -invariant orthonormal basis of eigenvectors {ei}∞1 and
we denote the corresponding eigenvalues by {ti}∞1 .

Now we proceed to the construction of the functionals Si ∈ L(TE × �M,δ, C), to appear
in expansion (A.1). Let α̂± = (α±

1,2, . . . , α
±
M−1,M) be

(
M

2

)
-tuples of multi-indices and let

16
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α̂ = (α̂+, α̂−) be the corresponding 2
(
M

2

)
-multi-index. First, we define the contribution to the

functional which is responsible for the correlations between measurements:

Fα̂,β̂ (	x) =
∏

1�i<j�M

(−1)|α
−
i,j |+|α+

i,j |√
α+

i,j !β+
i,j !α−

i,j !β−
i,j !

(�|a(L+e	xi
)α

+
i,j a∗(L+e	xj

)β
+
i,j �)

· (�|a(L−e	xi
)α

−
i,j a∗(L−e	xj

)β
−
i,j �), (A.11)

where we use the short-hand notation L±ei,	xj
= U(	xj )L±ei . The functionals in question are

given by

Sμ,ν,α̂,β̂ (ϕ, 	x) = i|μ
+|+|ν+|+2|μ−|

μ!ν!
√

α̂!β̂!
Fα̂,β̂ (	x)ϕ(a∗(Le	x)μa(Le	x)ν), (A.12)

where ϕ ∈ TE and 	x ∈ �M,δ . The norms of these functionals satisfy the bound, stated in the
following lemma, whose proof is postponed to appendix B.

Lemma A.2. The functionals Sμ,ν,α̂,β̂ ∈ L(TE×�M,δ, C), given by (A.12), satisfy the following
estimates:

‖Sμ,ν,α̂,β̂‖ �

⎛⎝M
1
2 (|μ|+|ν|)
E

μ!ν!
tμ+ν

⎞⎠⎛⎝ 1√
α̂!β̂!

√
|α̂+|!|α̂−|!|β̂+|!|β̂−|!

α̂!β̂!
g(δ)|α̂|+|β̂|t α̂+β̂

⎞⎠ , (A.13)

where ME = E
m

, {ti}∞1 are the eigenvalues of the operator T given by (A.9) and the function g,
which is independent of α̂ and β̂, satisfies limδ→∞ g(δ) = 0.

Given the estimates from lemmas A.1 (b) and A.2 we can proceed to the study of
convergence properties of expansion (A.1). For this purpose we need some notation: for
any pair of

(
M

2

)
-tuples of multi-indices α̂± = (α±

1,2, . . . , α
±
M−1,M) we define the associated

M-tuples of multi-indices α̂→
±, α̂←

± as follows:

α̂→
±
i
=

∑
1<j�M

i<j

α±
i,j , (A.14)

α̂←
±
i
=

∑
1�j<M,

j<i

α±
j,i , (A.15)

where i ∈ {1, . . . , M}. The corresponding 2M-multi-indices are denoted by α̂→ =
(α̂→

+, α̂→
−), α̂← = (α̂←

+, α̂←
−). The relevant estimate is stated in the following lemma, whose

proof is given in appendix B.

Lemma A.3. The functionals τμ ∈ (A(O)⊗N)∗ and Sμ,ν,α̂,β̂ ∈ L(TE × �M,δ, C) satisfy∑
μ,ν

α̂,β̂

(|α̂|,|β̂|)=(0,0)

‖τμ+ν+α̂→+β̂←
‖‖Sμ,ν,α̂,β̂‖ < ∞ (A.16)

for sufficiently large δ > 0, depending on M,E and the double cone O. Moreover, the above
sum tends to zero with δ → ∞.

After this preparation we proceed to the main part of this appendix.
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Proof of lemma 4.3. We define �′′
E,M,δ ∈ L(TE × �M,δ, (A(O)⊗M)∗) as follows:

�′′
E,M,δ(ϕ, 	x) =

∑
μ,ν

α̂,β̂
(|α̂|,|β̂|)=(0,0)

τμ+ν+α̂→+β̂←
Sμ,ν,α̂,β̂ (ϕ, 	x). (A.17)

In view of lemma A.3 this map is well defined for sufficiently large δ > 0 and satisfies
limδ→∞ ‖�′′

E,M,δ‖ = 0 as required in part (a) of lemma 4.3. In order to verify part (b), it
suffices to show that for any f1, . . . , fM ∈ L

�′′
E,M,δ(ϕ, 	x)(W(f1) ⊗ · · · ⊗ W(fM)) = �′

E,M,δ(ϕ, 	x)(W(f1) × · · · × W(fM))

= e− 1
2

∑M
k=1 ‖fk‖2

(e
−∑1�i<j�M(〈f +

i,	xi
|f +

j,	xj
〉+〈f −

i,	xi
|f −

j,	xj
〉) − 1)

·ϕ(: W(f1,	x1 + · · · + fM,	xM
) :), (A.18)

where the second equality restates the definition of the map �′
E,M,δ given by formula (4.11).

The lhs can be evaluated making use of lemma A.1 (a) and definition (A.12)

�′′
E,N,δ(ϕ, 	x)(W(f1) × · · · × W(fN))

= e− 1
2

∑M
k=1 ‖fk‖2

∑
μ,ν

α̂,β̂

(|α̂|,|β̂|)=(0,0)

i|μ
+|+|ν+|+2|μ−|

μ!ν!
√

α̂!β̂!
〈e|f 〉μ+ν+α̂→+β̂←Fα̂,β̂ (	x)ϕ(a∗(Le	x)μa(Le	x)ν).

(A.19)

First, we consider the sum w.r.t. μ, ν. There holds

∑
μ,ν

i|μ
+|+|ν+|+2|μ−|

μ!ν!
〈e|f 〉μ+νϕ(a∗(Le	x)μa(Le	x)ν) = ϕ(: W(f1,	x1 + · · · + fM,	xM

) :), (A.20)

as one can verify by expanding the normal-ordered Weyl operator on the rhs into the power
series of creation and annihilation operators of the functions f ±

j,	xj
, expanding each such

function in the orthonormal basis {ei}∞1 and making use of the multinomial formula

a(∗)(f ±
j,	xj

)m
±
j =

∑
μ±

j ,|μ±
j |=m±

j

m±
j !

μ±
j !

〈e|fj 〉μ±
j a(∗)(L+e	xj

)μ
±
j . (A.21)

The sum w.r.t. α̂, β̂ in (A.19) gives

∑
α̂,β̂

(|α̂|,|β̂|)=(0,0)

1√
α̂!β̂!

〈e|f 〉 α̂→+β̂←Fα̂,β̂ (	x) =
⎛⎝ ∏

1�i<j�M

e
−〈f +

i,	xi
|f +

j,	xj
〉
e
−〈f −

i,	xi
|f −

j,	xj
〉
⎞⎠− 1. (A.22)

This relation can be verified by expanding the exponential functions on the rhs into Taylor
series, making use of the identity

〈
f ±

i,	xi
|f ±

j,	xj

〉
k±
i,j =

(
�|a(f ±

i,	xi

)k±
i,j a∗(f ±

j,	xj

)k±
i,j �

)
k±
i,j !

(A.23)

and applying to the resulting expression expansions (A.21). Comparing (A.22) and (A.20)
with (A.18) we conclude the proof of lemma 4.3. �
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Appendix B. Some technical proofs

In this appendix, we provide proofs of lemmas A.2 and A.3 which we used in appendix A to
prove lemma 4.3.

The key ingredient of our proof of lemma A.2 is the observation that when the spatial
distance between two local operators is large, then the energy transfer between them is heavily
damped. We exploited this idea in section 2, where it was encoded in lemma 2.1. In
the present context it is more convenient to use the following result, which is a variant of
lemma 2.3 of [19].

Lemma B.1. Let δ > 0. Then there exists some continuous function h(ω), ω ∈ R which
decreases almost exponentially, i.e.

sup
ω

|h(ω)|e|ω|κ < ∞ for 0 < κ < 1, (B.1)

and which has the following property: for any pair of operators A,B which have, together with
their adjoints, a common, invariant, stable under time translations dense domain containing
� and satisfy [A(t), B] = 0 for |t | < δ, there holds the identity

(�|AB�) = 1
2 {(�|Ah(δH)B�) + (�|Bh(δH)A�)}. (B.2)

With the help of this result we prove the following key lemma which will help us to control
the correlation terms Fα̂,β̂ .

Lemma B.2. Let δ > 0, (	x, 	y) ∈ �2,δ, {ei}∞1 be the basis of the J -invariant eigenvectors
of the operator T given by (A.9), let {ti}∞1 be the corresponding eigenvalues and let α, β be
multi-indices. Then there holds, for any combination of ± signs,

|(�|a(L±e	x)αa∗(L±e	y)β�)| �
√

|α|!|β|!g(δ)|α|+|β|tα+β, (B.3)

where the function g is independent of α, β and satisfies limδ→∞ g(δ) = 0.

Proof. We consider here only the (++) case, as the remaining cases are treated analogously.
We define the operators φ+(ei) = a∗(L+ei) + a(L+ei) and their translates φ+(ei)(	x) =
U(	x)φ+(ei)U(	x)−1. Since the projection L+ commutes with J and Jei = ei , these operators
are just the (canonical) fields of massive scalar free field theory. Since δ > 0, locality
guarantees that φ+(ei)(	x) and φ+(ej )(	y) satisfy the assumptions of lemma B.1. Therefore, we
obtain

〈L+ei,	x |L+ej,	y〉 = (�|φ+(ei)(	x)φ+(ej )(	y)�)

= 1
2 ((�|φ+(ei)(	x)h(δH)φ+(ej )(	y)�) + (�|φ+(ej )(	y)h(δH)φ+(ei)(	x)�))

= 1
2 (〈L+ei,	x |h(δω)L+ej,	y〉 + 〈L+ej,	y |h(δω)L+ei,	x〉). (B.4)

Making use of this result, exploiting the fact that the lhs of (B.3) vanishes for |α| = |β| and
setting |α| = |β| = k, we get

(�|a(L+e	x)αa∗(L+e	y)β�) = (�|a(L+ei1,	x) · · · a(L+eik,	x)a
∗(L+ej1,	y) · · · a∗(L+ejk,	y)�)

=
∑
σ∈Sk

〈L+ei1,	x |L+ejσ1 ,	y〉 · · · 〈L+eik,	x |L+ejσk
,	y〉

=
∑
σ∈Sk

1

2

(〈L+ei1,	x |h(δω)L+ejσ1 ,	y〉 + 〈L+ejσ1 ,	y |h(δω)L+ei1,	x〉
)

· · · 1

2

(〈L+eik,	x |h(δω)L+ejσk
,	y〉 + 〈L+ejσk

,	y |h(δω)L+eik,	x〉
)
, (B.5)
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where the sum extends over all permutations of a k-element set. For any 0 < κ < 1 there
holds c2

h := supω |h(ω)e|ω|κ | < ∞. Consequently, we get

|〈L+ei,	x |h(δω)L+ej,	y〉| = |〈L+ei,	x |h(δω)e(δ|ω|)κ e−(δκ−1)|ω|κ e−|ω|κL+ej,	y〉|
� c2

he−(δκ−1)mκ ‖e− |ω|κ
2 L+ei‖‖e− |ω|κ

2 L+ej‖. (B.6)

Finally, we note that ‖e− |ω|κ
2 L+ei‖ = ‖T +

κ ei‖ � ‖T ei‖ = ti and the claim follows. �

After this preparation we proceed to the proof of lemma A.2.

Proof of lemma A.2. Exploiting the energy bounds [10] (see estimate (4.8) above), we obtain

|ϕ(a∗(Le	x)μa(Le	x)ν)| � M
1
2 (|μ|+|ν|)
E ‖QELe‖μ‖QELe‖ν

� M
1
2 (|μ|+|ν|)
E tμ+ν . (B.7)

Next, with the help of lemma B.2 we analyze the expressions Fα̂,β̂ given by (A.11)

|Fα̂,β̂ (	x)| �
∏

1�i<j�M

√√√√ |α+
i,j |!|β+

i,j |!|α−
i,j |!|β−

i,j |!
α+

i,j !β+
i,j !α−

i,j !β−
i,j !

(g(δ)t)α
+
i,j +β+

i,j +α−
i,j +β−

i,j

�

√
|α̂+|!|α̂−|!|β̂+|!|β̂−|!

α̂!β̂!
g(δ)|α̂|+|β̂|t α̂+β̂ , (B.8)

where we made use of the estimate
∏

1�i<j�M |α+
i,j |! � (

∑
1�i<j�M |α+

i,j |)! = |α̂+|!.
Altogether, combining (B.7) and (B.8), we obtain from (A.12) the bound (A.13). �

We conclude this appendix with a proof of lemma A.3.

Proof of lemma A.3. First, we estimate the norms of the functionals τμ+ν+α̂→+β̂←
. Making use

of the bound stated in lemma A.1 (b) and of the fact that (a + b + c)! � 3a+b+ca!b!c! for any
a, b, c ∈ N0, which follows from properties of the multinomial coefficients, we get

‖τμ+ν+α̂→+β̂←
‖ � 4

|μ|+|ν|+|α̂→|+|β̂←|√
(μ + ν + α̂→ + β̂←)!

�
(
(4

√
3)|μ|+|ν|

√
(μ + ν)!

)(
(4

√
3)|α̂|+|β̂|

√
α̂→!β̂←!

)
, (B.9)

where we noted that |α̂→ | = |α̂| and |β̂← | = |β̂|. (See definitions (A.14) and (A.15)). The factor√
α̂→!β̂←! in this bound will be controlled by the factor

√
α̂!β̂! appearing in the denominator in

(A.13). We note the relevant estimate

α̂→!

α̂!
=

α̂→
+!

α̂+!

α̂→
−!

α̂−!
=

M∏
i=1

(
∑

1<j�M,j>i α+
i,j )!

(
∏

1<j�M,j>i α+
i,j )!

(
∑

1<j�M,j>i α−
i,j )!

(
∏

1<j�M,j>i α−
i,j )!

� M
∑

1�i<j�M(|α+
i,j |+|α−

i,j |) = M |α̂|, (B.10)

where we made use of properties of the multinomial coefficients. Similarly, the factor√
(μ + ν)! appearing in (B.9) will be counterbalanced by

√
μ!ν! extracted from the

denominator of (A.13). The relevant estimate relies on the property of the binomial coefficients

(μ + ν)!

μ!ν!
� 2|μ|+|ν|. (B.11)
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With the help of the last two bounds and relations (A.13) and (B.9) we obtain∑
μ,ν

α̂,β̂

(|α̂|,|β̂|)=(0,0)

‖τμ+ν+α̂→+β̂←
‖‖Sμ,ν,α̂,β̂‖ �

∑
μ,ν

⎛⎝ (4
√

6ME)|μ|+|ν|√
μ!ν!

tμ+ν

⎞⎠

·
∑
α̂,β̂

(|α̂|,|β̂|)=(0,0)

⎛⎝√ |α̂+|!|α̂−|!|β̂+|!|β̂−|!
α̂!β̂!

(4
√

3Mg(δ))|α̂|+|β̂|t α̂+β̂

⎞⎠ , (B.12)

where we made use of the bound (B.10). The sum w.r.t. μ, ν can be easily estimated as it
factorizes into 4M independent sums: let μ be an ordinary multi-index, then∑
μ,ν

⎛⎝ (4
√

6ME)|μ|+|ν|√
μ!ν!

tμ+ν

⎞⎠ =
(∑

μ

(4
√

6ME)|μ|
√

μ!
tμ

)4M

�

⎛⎝ ∞∑
k=0

(4
√

6ME)k√
k!

∑
μ,|μ|=k

|μ|!
μ!

tμ

⎞⎠4M

�
( ∞∑

k=0

(4
√

6ME‖T ‖1)
k

√
k!

)4M

, (B.13)

where in the second step we made use of the fact that the multinomial coefficients are greater
than or equal to one and in the last step we used the multinomial formula. Clearly, the last
sum is convergent. (As a matter of fact it would suffice to consider k � ME since Sμ,ν,α̂,β̂ ,

given by formula (A.12), vanishes for |μ| > ME or |ν| > ME .) As for the sum w.r.t. α̂, β̂

on the rhs of (B.12), it suffices to study the case |α̂+| = 0. Then the sum factorizes into four
independent sums and we discuss here one of the factors∑

α̂+,|α̂+|=0

(√ |α̂+|!
α̂+!

)
(4

√
3Mg(δ))|α̂

+|t α̂
+

=
∑

α̂+,|α̂+|=0

(4
√

3Mg(δ))|α̂
+|
(√

(|α+
1,2| + · · · + |α+

M−1,M |)!
α+

1,2! · · · α+
M−1,M !

)
t α̂

+

�
∑

α̂+,|α̂+|=0

(4
√

3M3g(δ))|α̂
+| |α+

1,2|!
α+

1,2!
· · · |α+

M−1,M |!
α+

M−1,M !
t α̂

+

�
∑

k+
1,2,...,k+

M−1,M∑
1�i<j�M k+

i,j
=0

∏
1�i<j�M

(4
√

3M3g(δ))k
+
i,j

∑
α+

i,j ,|α+
i,j |=k+

i,j

|α+
i,j |!

α+
i,j !

tα
+
i,j

�
∑

k+
1,2 ,...,k+

M−1,M∑
1�i<j�M k+

i,j
=0

(4
√

3M3g(δ)‖T ‖1)
(k+

1,2+···+k+
M−1,M ). (B.14)

In the second step we made use of the fact that
(|α+

1,2| + · · · + |α+
M−1,M |)!

|α+
1,2|! · · · |α+

M−1,M |! � M2(|α+
1,2|+···+|α+

M−1,M |) (B.15)

and in the last step we exploited the multinomial formula. The last expression on the rhs
of (B.14) is a convergent geometric series for sufficiently large δ and it tends to zero with
δ → ∞, since limδ→∞ g(δ) = 0.
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